Introduction to Information Retrieval
http://informationretrieval.org

IIR 15-2: Learning to Rank

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2011-08-29
Models and Methods

1. Boolean model and its limitations (30)
2. Vector space model (30)
3. Probabilistic models (30)
4. Language model-based retrieval (30)
5. Latent semantic indexing (30)
6. Learning to rank (30)
Take-away
Take-away

- **Machine-learned relevance**: We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.
Take-away

- **Machine-learned relevance**: We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.

- **Learning to rank**: A machine-learning method that directly optimizes the ranking (as opposed to classification or regression accuracy).
Outline

1 Machine-learned relevance

2 Learning to rank
Machine-learned relevance: Basic idea
Given: A training set of examples, each of which is a tuple of: a query q, a document d, a relevance judgment for d on q
Machine-learned relevance: Basic idea

- Given: A training set of examples, each of which is a tuple of:
 - a query q,
 - a document d,
 - a relevance judgment for d on q

- Learn weights from this training set, so that the learned scores approximate the relevance judgments in the training set
Machine-learned relevance vs. Text classification
Machine-learned relevance vs. Text classification

- Both are machine learning approaches
Machine-learned relevance vs. Text classification

- Both are machine learning approaches
- Text classification (if used for information retrieval, e.g., in relevance feedback) is query-specific.
Machine-learned relevance vs. Text classification

- Both are machine learning approaches
- Text classification (if used for information retrieval, e.g., in relevance feedback) is query-specific.
 - We need a query-specific training set to learn the ranker.
Both are machine learning approaches

Text classification (if used for information retrieval, e.g., in relevance feedback) is query-specific.

- We need a query-specific training set to learn the ranker.
- We need to learn a new ranker for each query.
Both are machine learning approaches

Text classification (if used for information retrieval, e.g., in relevance feedback) is \textit{query-specific}.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.

Machine-learned relevance and learning to rank usually refer to \textit{query-independent} ranking.
Both are machine learning approaches

Text classification (if used for information retrieval, e.g., in relevance feedback) is **query-specific**.

- We need a query-specific training set to learn the ranker.
- We need to learn a new ranker for each query.

Machine-learned relevance and learning to rank usually refer to **query-independent** ranking.

We learn a single classifier or ranker.
Both are machine learning approaches

Text classification (if used for information retrieval, e.g., in relevance feedback) is \textbf{query-specific}.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.

Machine-learned relevance and learning to rank usually refer to \textbf{query-independent} ranking.

We learn a single classifier or ranker.

We can then rank documents for a query that we don’t have any relevance judgments for.
Two typical features used in machine-learned relevance
Two typical features used in machine-learned relevance

- The vector space cosine similarity between query and document (denoted α)
Two typical features used in machine-learned relevance

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
Two typical features used in machine-learned relevance

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
- Thus, we have
Two typical features used in machine-learned relevance

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
- Thus, we have
 - one feature (α) that captures overall query-document similarity
Two typical features used in machine-learned relevance

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
- Thus, we have
 - one feature (α) that captures overall query-document similarity
 - one feature (ω) that captures query term proximity (often indicative of topical relevance)
Machine-learned relevance: Setup for these two features
Machine-learned relevance: Setup for these two features

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>α</th>
<th>ω</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux ...</td>
<td>0.032</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin ...</td>
<td>0.02</td>
<td>4</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>operating system</td>
<td>0.043</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>runtime ...</td>
<td>0.004</td>
<td>2</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel layer</td>
<td>0.022</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>device driver</td>
<td>0.03</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3191</td>
<td>device driver</td>
<td>0.027</td>
<td>5</td>
<td>nonrelevant</td>
</tr>
</tbody>
</table>

α is the cosine score. ω is the window width.
Machine-learned relevance: Setup (2)
Two classes: relevant = 1 and nonrelevant = 0
Two classes: relevant = 1 and nonrelevant = 0

We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
Machine-learned relevance: Setup (2)

- Two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
Two classes: relevant = 1 and nonrelevant = 0

We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.

We wish this function to be in agreement with our set of training examples as much as possible.

The simplest classifier is a linear classifier, defined by an equation of the form:

\[\text{Score}(d, q) = \text{Score}(\alpha, \omega) = a\alpha + b\omega + c, \]

where we learn the coefficients \(a, b, c\) from training data.
Graphic representation of the training set
Graphic representation of the training set
In this case, we learn a linear classifier in 2D
In this case, we learn a linear classifier in 2D

A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$

Example for a 2D linear classifier

Points (d_1, d_2) with $w_1d_1 + w_2d_2 \geq \theta$ are in the class c.

Points (d_1, d_2) with $w_1d_1 + w_2d_2 < \theta$ are in the complement class \overline{c}.
In this case, we learn a linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- Example for a 2D linear classifier
- Points (d_1, d_2) with $w_1 d_1 + w_2 d_2 \geq \theta$ are in the class c.
- Points (d_1, d_2) with $w_1 d_1 + w_2 d_2 < \theta$ are in the complement class \overline{c}.
Summary

- Machine-learned relevance
Summary

- Machine-learned relevance
 - Assemble a training set of query-document-judgment triples
Summary

- Machine-learned relevance
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
Summary

- Machine-learned relevance
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
Summary

- Machine-learned relevance
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
 - Rank documents according to model’s decisions
Summary

- **Machine-learned relevance**
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
 - Rank documents according to model’s decisions
 - Return the top K (e.g., $K = 10$) to the user
Summary

- **Machine-learned relevance**
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
 - Rank documents according to model’s decisions
 - Return the top K (e.g., $K = 10$) to the user

- In principle, any classification/regression method can be used.
Summary

- **Machine-learned relevance**
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
 - Rank documents according to model’s decisions
 - Return the top K (e.g., $K = 10$) to the user

- In principle, any classification/regression method can be used.
- Big advantage: we avoid hand-tuning scoring functions and simply learn them from training data.
Summary

- Machine-learned relevance
 - Assemble a training set of query-document-judgment triples
 - Train classification or regression model on training set
 - For a new query, apply model to all documents (actually: a subset)
 - Rank documents according to model’s decisions
 - Return the top K (e.g., $K = 10$) to the user

- In principle, any classification/regression method can be used.
- Big advantage: we avoid hand-tuning scoring functions and simply learn them from training data.
- Bottleneck: we need to maintain a representative set of training examples whose relevance assessments must be made by humans.
Machine-learned relevance for more than two features

- The approach can be readily generalized to a large number of features.
Machine-learned relevance for more than two features

- The approach can be readily generalized to a large number of features.
- Any measure that can be calculated for a query-document pair is fair game for this approach.
LTR features used by Microsoft Research (1)
LTR features used by Microsoft Research (1)

- Features derived from standard IR models: query term number, query term ratio, length, idf, sum/min/max/mean/variance of term frequency, sum/min/max/mean/variance of length normalized term frequency, sum/min/max/mean/variance of tf-idf weight, boolean model, BM25, LM-absolute-discounting, LM-dirichlet, LM-jelinek-mercer
Features derived from standard IR models: query term number, query term ratio, length, idf, sum/min/max/mean/variance of term frequency, sum/min/max/mean/variance of length normalized term frequency, sum/min/max/mean/variance of tf-idf weight, boolean model, BM25, LM-absolute-discounting, LM-dirichlet, LM-jelinek-mercer.

Most of these features can be computed for different zones: body, anchor, title, url, whole document.
LTR features used by Microsoft Research (2)
LTR features used by Microsoft Research (2)

- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
LTR features used by Microsoft Research (2)

- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
LTR features used by Microsoft Research (2)

- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
- Usage-based features: query-url click count, url click count, url dwell time
LTR features used by Microsoft Research (2)

- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
- Usage-based features: query-url click count, url click count, url dwell time
- All of these features can be assembled into a big feature vector and then fed into the machine learning algorithm.
Shortcoming of what we’ve presented so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
Shortcoming of what we’ve presented so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
Shortcoming of what we’ve presented so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between: specialized field of ordinal regression
Shortcoming of what we’ve presented so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between: specialized field of ordinal regression
- Machine learning for ad hoc retrieval is most properly thought of as an ordinal regression problem.
Shortcoming of what we’ve presented so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between: specialized field of ordinal regression
- Machine learning for ad hoc retrieval is most properly thought of as an ordinal regression problem.
- Next up: ranking SVMs, a machine learning method that learns an ordering directly.
Outline

1 Machine-learned relevance

2 Learning to rank
Basic setup for ranking SVMs
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query q, to order the documents that were returned by the search engine with respect to relevance to the query.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query q, to order the documents that were returned by the search engine with respect to relevance to the query.
- We again construct a vector of features $\psi_j = \psi(d_j, q)$ for each document-query pair – exactly as we did before.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query \(q \), to order the documents that were returned by the search engine with respect to relevance to the query.
- We again construct a vector of features \(\psi_j = \psi(d_j, q) \) for each document-query pair – exactly as we did before.
- For two documents \(d_i \) and \(d_j \), we then form the vector of feature differences:

\[
\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)
\]
Training a ranking SVM

- Vector of feature differences: $\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$
Training a ranking SVM

- Vector of feature differences: $\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$
- By hypothesis, one of d_i and d_j has been judged more relevant.
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
- Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.

\[\text{Schütze: Learning to rank 20 / 28} \]
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
- Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.
- If \(d_i \) is judged more relevant than \(d_j \), then we will assign the vector \(\Phi(d_i, d_j, q) \) the class \(y_{ijq} = +1 \); otherwise \(-1\).
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
- Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.
- If \(d_i \) is judged more relevant than \(d_j \), then we will assign the vector \(\Phi(d_i, d_j, q) \) the class \(y_{ijq} = +1 \); otherwise \(-1\).
- This gives us a training set of pairs of vectors and “precedence indicators”.

Schütze: Learning to rank
Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)

By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.

Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.

If \(d_i \) is judged more relevant than \(d_j \), then we will assign the vector \(\Phi(d_i, d_j, q) \) the class \(y_{ijq} = +1 \); otherwise \(-1\).

This gives us a training set of pairs of vectors and “precedence indicators”.

We can then train an SVM on this training set with the goal of obtaining a classifier that returns

\[\vec{w}^T \Phi(d_i, d_j, q) > 0 \iff d_i \prec d_j \]
Advantages of Ranking SVMs vs. Classification/regression
Advantages of Ranking SVMs vs. Classification/regression

Documents can be evaluated *relative* to other candidate documents for the same query . . .
Advantages of Ranking SVMs vs. Classification/regression

- Documents can be evaluated relative to other candidate documents for the same query . . .
- . . .rather than having to be mapped to a global scale of goodness.
Advantages of Ranking SVMs vs. Classification/regression

- Documents can be evaluated relative to other candidate documents for the same query . . .
- . . . rather than having to be mapped to a global scale of goodness.
- This often is an easier problem to solve since just a ranking is required rather than an absolute measure of relevance.
Why simple ranking SVMs don’t work that well
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- In most IR settings, getting the order of the top documents right is key.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- In most IR settings, getting the order of the top documents right is key.
 - In the simple setting we have described, top and bottom ranks will not be treated differently.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- In most IR settings, getting the order of the top documents right is key.
 - In the simple setting we have described, top and bottom ranks will not be treated differently.
- Learning-to-rank frameworks actually used in IR are more complicated than what we have presented here.
Example for superior performance of LTR
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2002.
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2002. Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2002.
Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9</th>
<th></th>
<th>TREC 10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>W/L</td>
<td>MAP</td>
<td>W/L</td>
</tr>
<tr>
<td>SVM^Δ_{map}</td>
<td>0.242</td>
<td>–</td>
<td>0.236</td>
<td>–</td>
</tr>
<tr>
<td>Best Func.</td>
<td>0.204</td>
<td>39/11</td>
<td>0.181</td>
<td>37/13</td>
</tr>
<tr>
<td>2nd Best</td>
<td>0.199</td>
<td>38/12</td>
<td>0.174</td>
<td>43/7</td>
</tr>
<tr>
<td>3rd Best</td>
<td>0.188</td>
<td>34/16</td>
<td>0.174</td>
<td>38/12</td>
</tr>
</tbody>
</table>
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).

Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2002.

Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9</th>
<th>TREC 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>W/L</td>
</tr>
<tr>
<td>SVM^Δ_{map}</td>
<td>0.242</td>
<td>–</td>
</tr>
<tr>
<td>Best Func.</td>
<td>0.204</td>
<td>39/11</td>
</tr>
<tr>
<td>2nd Best</td>
<td>0.199</td>
<td>38/12</td>
</tr>
<tr>
<td>3rd Best</td>
<td>0.188</td>
<td>34/16</td>
</tr>
</tbody>
</table>

Learning-to-rank clearly better than non-machine-learning approaches
Assessment of learning to rank
The idea of learning to rank is old.
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
The idea of learning to rank is old.

- Early work by Norbert Fuhr and William S. Cooper

- Renewed recent interest due to:
The idea of learning to rank is old.

- Early work by Norbert Fuhr and William S. Cooper

- Renewed recent interest due to:
 - Better machine learning methods becoming available
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
- Renewed recent interest due to:
 - Better machine learning methods becoming available
 - More computational power
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
- Renewed recent interest due to:
 - Better machine learning methods becoming available
 - More computational power
 - Willingness to pay for large annotated training sets
The idea of learning to rank is old.
- Early work by Norbert Fuhr and William S. Cooper
- Renewed recent interest due to:
 - Better machine learning methods becoming available
 - More computational power
 - Willingness to pay for large annotated training sets

Strengths of learning-to-rank
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
- Renewed recent interest due to:
 - Better machine learning methods becoming available
 - More computational power
 - Willingness to pay for large annotated training sets
- Strengths of learning-to-rank
 - Humans are bad at fine-tuning a ranking function with dozens of parameters.
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
- Renewed recent interest due to:
 - Better machine learning methods becoming available
 - More computational power
 - Willingness to pay for large annotated training sets
- Strengths of learning-to-rank
 - Humans are bad at fine-tuning a ranking function with dozens of parameters.
 - Machine-learning methods are good at it.
The idea of learning to rank is old.

- Early work by Norbert Fuhr and William S. Cooper

Renewed recent interest due to:

- Better machine learning methods becoming available
- More computational power
- Willingness to pay for large annotated training sets

Strengths of learning-to-rank

- Humans are bad at fine-tuning a ranking function with dozens of parameters.
- Machine-learning methods are good at it.
- Web search engines use a large number of features → web search engines need some form of learning to rank.
Information retrieval models: Pros and Cons
Least effort: Boolean system
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
- State-of-the-art performance: BM25, LMs
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
- State-of-the-art performance: BM25, LMs
 - You need to tune parameters.
Least effort: Boolean system
 - In general, low user satisfaction
A little bit more effort: Vector space model
 - Acceptable performance in many cases
State-of-the-art performance: BM25, LMs
 - You need to tune parameters.
Best performance: learning to rank
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
- State-of-the-art performance: BM25, LMs
 - You need to tune parameters.
- Best performance: learning to rank
 - But you need an expensive training set
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
- State-of-the-art performance: BM25, LMs
 - You need to tune parameters.
- Best performance: learning to rank
 - But you need an expensive training set
- Noisy data or vocabulary mismatch queries/documents & no time to custom-build a solution & collection is not too large
Information retrieval models: Pros and Cons

- Least effort: Boolean system
 - In general, low user satisfaction
- A little bit more effort: Vector space model
 - Acceptable performance in many cases
- State-of-the-art performance: BM25, LMs
 - You need to tune parameters.
- Best performance: learning to rank
 - But you need an expensive training set
- Noisy data or vocabulary mismatch queries/documents & no time to custom-build a solution & collection is not too large
 - Use Latent Semantic Indexing
Take-away

- **Machine-learned relevance**: We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.

- **Learning to rank**: A machine-learning method that directly optimizes the ranking (as opposed to classification or regression accuracy).
Resources

- Chapter 15 of Introduction to Information Retrieval
- Resources at http://informationretrieval.org/essir2011
 - References to learning to rank literature
 - Microsoft learning to rank datasets
 - How Google tweaks ranking
Exercise
Write down the training set from the last exercise as a training set for a ranking SVM.